跳到主要内容

数学:2025 年浙江中考第 24 题

· 阅读需 2 分钟
lailai
Blogger

AA 为原点,ABABxx 轴正方向建系。

易得:

A(0,0),B(5,0),C(325,245),D(75,245)A(0,0),B(5,0),C\left(\dfrac{32}{5},\dfrac{24}{5}\right),D\left(\dfrac{7}{5},\dfrac{24}{5}\right)

因为 EEADAD 延长线上,不妨设:

E(7t5,24t5)E\left(\dfrac{7t}{5},\dfrac{24t}{5}\right)

因为 FFAA 关于 BEBE 的对称点,所以:

F=2[B+(AB)(EB)EB2(EB)]A=(1152t25(25t214t+25),48t(257t)5(25t214t+25))F=2\left[B+\dfrac{(A-B)\cdot(E-B)}{\lVert E-B\rVert^{2}}\,(E-B)\right]-A=\left( \dfrac{1152t^{2}}{5(25t^{2}-14t+25)}, \dfrac{48t(25-7t)}{5(25t^{2}-14t+25)} \right)

因为 PPACACEFEF 的交点,所以:

P(64t(25t7)5(25t2+50t39),48t(25t7)5(25t2+50t39))P\left(\dfrac{64t(25t-7)}{5(25t^{2}+50t-39)},\dfrac{48t(25t-7)}{5(25t^{2}+50t-39)} \right)

令:

f(t)=APBP=16t(25t7)3(25t214t+25)(425t2494t+169)25t2+50t39f(t)=AP-BP=\dfrac{16t(25t-7)-3\sqrt{(25t^{2}-14t+25)(425t^{2}-494t+169)}}{25t^{2}+50t-39}

求导:

f(t)=(800t1123[(50t14)(425t2494t+169)+(25t214t+25)(850t494)]2(25t214t+25)(425t2494t+169))(25t2+50t39)(400t2112t3(25t214t+25)(425t2494t+169))(50t+50)(25t2+50t39)2f'(t)= \frac{ \Bigl( 800t-112-\dfrac{3\bigl[(50t-14)(425t^{2}-494t+169)+(25t^{2}-14t+25)(850t-494)\bigr]} {2\sqrt{(25t^{2}-14t+25)(425t^{2}-494t+169)}} \Bigr)\,(25t^{2}+50t-39)- \Bigl( 400t^{2}-112t-3\sqrt{(25t^{2}-14t+25)(425t^{2}-494t+169)} \Bigr)\,(50t+50)} {\bigl(25t^{2}+50t-39\bigr)^{2}}

f(t)=0f'(t)=0

475t2650t+91=0475t^2-650t+91=0

求解:

t1=65839950.1583,t2=65+839951.2101t_1=\dfrac{65-8\sqrt{39}}{95}\approx0.1583,t_2=\dfrac{65+8\sqrt{39}}{95}\approx1.2101

代入 f(t)f(t)

f(t1)=4433955.0530,f(t2)=339452.9470f(t_1)=\frac{44-3\sqrt{39}}{5}\approx5.0530,f(t_2)=\frac{3\sqrt{39}-4}{5}\approx2.9470

所以 APBPAP-BP 最小值为:

33945\dfrac{3\sqrt{39}-4}{5}